Non-crossing nonparametric estimates of quantile curves
نویسندگان
چکیده
In this paper a new nonparametric estimate of conditional quantiles is proposed, that avoids the problem of crossing quantile curves [calculated for various p ∈ (0, 1)]. The method uses an initial estimate of the conditional distribution function in a first step and solves the problem of inversion and monotonization with respect to p ∈ (0, 1) simultaneously. It is demonstrated that the new estimates are asymptotically normal distributed and asymptotically first order equivalent to quantile estimates obtained by local constant or local linear smoothing of the conditional distribution function. The performance of the new procedure is illustrated by means of a simulation study and some comparisons with the currently available procedures which are similar in spirit with the proposed method are presented. Keyword and Phrases: Quantile estimation, conditional distribution, local linear estimate, Nadaraya Watson estimate, crossing quantile curves
منابع مشابه
Nonparametric analysis of covariance using quantile curves
We consider the problem of testing the equality of J quantile curves from independent samples. A test statistic based on an L2-distance between non-crossing nonparametric estimates of the quantile curves from the individual samples is proposed. Asymptotic normality of this statistic is established under the null hypothesis, local and fixed alternatives, and the finite sample properties of a boo...
متن کاملNonparametric quantile regression for twice censored data
We consider the problem of nonparametric quantile regression for twice censored data. Two new estimates are presented, which are constructed by applying concepts of monotone rearrangements to estimates of the conditional distribution function. The proposed methods avoid the problem of crossing quantile curves. Weak uniform consistency and weak convergence is established for both estimates and t...
متن کاملNoncrossing quantile regression curve estimation.
Since quantile regression curves are estimated individually, the quantile curves can cross, leading to an invalid distribution for the response. A simple constrained version of quantile regression is proposed to avoid the crossing problem for both linear and nonparametric quantile curves. A simulation study and a reanalysis of tropical cyclone intensity data shows the usefulness of the procedur...
متن کامل2 7 A pr 2 00 7 QUANTILE AND PROBABILITY CURVES WITHOUT CROSSING
The most common approach to estimating conditional quantile curves is to fit a curve, typically linear, pointwise for each quantile. Linear functional forms, coupled with pointwise fitting, are used for a number of reasons including parsimony of the resulting approximations and good computational properties. The resulting fits, however, may not respect a logical monotonicity requirement – that ...
متن کاملA Nonparametric Model-based Approach to Inference for Quantile Regression
In several regression applications, a different structural relationship might be anticipated for the higher or lower responses than the average responses. In such cases, quantile regression analysis can uncover important features that would likely be overlooked by traditional mean regression. We develop a Bayesian method for fully nonparametric model-based quantile regression. The approach invo...
متن کامل